Inorganica Chimica Acta, 44 (1980) L111–L112 © Elsevier Sequoia S.A., Lausanne – Printed in Switzerland

Nuclear Magnetic Resonance Studies (³¹P and ¹⁹⁹Hg) of Complexes $[Hg_2X_4(PBu_3^n)_2]$ (X = Cl, Br and I) and their Reactions with $[NBu_4^n]X$

P. L. GOGGIN, R. J. GOODFELLOW, D. M. McEWAN and K. KESSLER

Department of Inorganic Chemistry, The University, Bristol BS8 1TS, U.K.

Received September 27, 1979

In their studies of ³¹P n.m.r. spectra of tertiary phosphine complexes of mercury(II) halides, Grim *et al.* [1] noted that whilst complexes of the type $[Hg_2X_4(PR_3)_2]$ (PR₃ = PBu₃ⁿ, PBu₂ⁿPh or PEt₂Ph) gave a single resonance with ¹⁹⁹Hg satellites for X = Cl or Br, the iodides showed two resonances each with mercury satellites. They concluded that the sole or major component was the *trans* dimer (*I*), a structural element identifiable in crystals (although secondary association with a neighbouring dimer unit

also occurs) [2, 3]. They suggested that the second component for the iodides might be either the *cis* dimer (*II*) or the unsymmetrical dimer (*III*), and favoured the latter on the grounds of similarity of

³¹P chemical shifts and ¹J(HgP) coupling constants to those of the corresponding complexes $[HgI_2(PR_3)_2]$. Observation of the ¹⁹⁹Hg-{¹H} F.t. n.m.r. spectrum provides a method of determining the number of phosphine ligands attached to the metal, through the HgP coupling pattern. For $[Hg_2 I_4(PBu_3^n)_2]$ (0.5 *M* in CDCl₃), three features, a singlet, a doublet and a triplet are observed in order of increasing frequency (Table I). The doublet is the most intense and has a separation equal to ¹J(HgP) of the major species seen in the ³¹P spectrum. The splitting of the triplet corresponds to ¹J(HgP) of the minor species in the ³¹P spectrum and the triplet and singlet appear of approximately equal intensity.

The above results in keeping with structure (III) for the minor component, and the ¹⁹⁹Hg shifts are close to the values for $[HgI_2(PBu_3^n)_2]$ (see Table I) and $[NBu_4^n]_2[HgI_4]$ [-3510 p.p.m. (CH₂Cl₂) or

TABLE I. N.m.r. Parameters of Some Mercury Complexes with Tri-n-butylphosphine.

Complex ^a		δ(¹⁹⁹ Hg) ^b	δ(³¹ P) ^b	¹ J(HgP)/Hz
$[Hg_2Cl_4(PBu_3^n)_2]$		-741	34.1	7414
$[Hg_2Br_4(PBu_3^n)_2]$	major species	-1020	27.7	6633
	minor species		30.4	4851
[Hg ₂ I ₄ (PBu ₃ ^{n}) ₂]	(major species	-1729 ^c	6.2	5195
	minor species	∫ –3507 [°]		
		_572 [°]	19.1	4375
[Hg ₂ Cl ₄ (PBu ⁿ ₃) ₂] + 4[NBu ⁿ ₄]Cl	(major species	$-647^{\mathbf{d}}$	28.6	7321
	minor species	{ −1142 ^d		
		∫ −402 ^d	29.9	5155
[Hg ₂ Br ₄ (PBu ₃ ⁿ) ₂] + 4[NBu ₄ ⁿ]Br	(major species	,	18.8	5950
	minor species		23.5	4792
$[Hg_2I_4(PBu_3^n)_2]$	(major species		-4.0	4077
$+ 4[NBu_4^n]I$	minor species		9.0	4058
$[HgCl_2(PBu_3^n)_2]$	(-	-404	28.9	5125
$[HgBr_2(PBu_3^n)_2]$		-471	24.0	4829
$[HgI_2(PBu_3^n)_2]$		-716	8.8	4101

^a0.5 *M* in CDCl₃. ^bIn p.p.m. to high frequency of HgMe₂ (¹⁹⁹Hg) or H₃PO₄ (³¹P). ^cca. 1 *M* in CH₂Cl₂. ^d[Hg₂Cl₄-(PBuⁿ₃)₂] + 2[NBuⁿ₄]Cl, ca. 1 *M* in CH₂Cl₂.

-3548 in the presence of 2 [NBu₄ⁿ] I to suppress dissociation], as might be expected for this structure. However, this explanation appears to be too simple. The ³¹P spectra show that whilst for a solution 1.0 Min Hg there are about 9 times as many Hg atoms bearing one phosphine as those bearing two, on diluting to 0.2 M in Hg this ratio increases to ca. 58 (a molecular weight determination on a dilute solution in chloroform supports the dimeric structure; observed = 1273, calc. = 1312). This change is approximately in accordance with association of two dimeric units into a tetramer at higher concentrations. An intimately bonded chain-like tetramer such as (IV) requires the metal to be co-ordinated to five iodides which seems unlikely on the grounds of charge distribution. Other possible explanations

(IV)

which do not require the co-ordination number about Hg to exceed four are two units of (*III*) associated by dipole pairing or close ion-pair contact in the ionised form $[Hg_2I_2(PBu_3^n)_4]$ $[HgI_3]_2$. An objection to the latter is that the ¹⁹⁹Hg chemical shift of the singlet is significantly different from that found for $[NBu_4^n]$ $[HgI_3]$ (-3257 p.p.m., in CH₂Cl₂). Whatever the form of the associated product, the association appears to be the driving force for the unsymmetrical distribution of the phosphines.

³¹P studies with the corresponding bromide indicate that this system shows similar behaviour at high concentration, but that the extent of phosphine transfer is only about a tenth of that for the iodide. In keeping with this trend only one ³¹P resonance with ¹⁹⁹Hg satellites was observed for the analogous chloride.

Neutral halide-bridged complexes commonly react with tetra-n-butylammonium halides in chlorinated hydrocarbons to give anionic complexes. The ³¹P spectrum of a CDCl₃ solution of $[Hg_2Cl_4(PBu_3^n)_2]$ to which $2[NBu_4^n]$ Cl had been added showed two main resonances; the ¹⁹⁹Hg-{¹H} spectrum showed three, a predominant doublet and a weaker singlet and triplet of approximately the same intensity. The ¹⁹⁹Hg shifts of the last two are very close to those found for [NBu₄]₂[HgCl₄] (-1141 p.p.m. in $CH_2 Cl_2$ and $[HgCl_2(PBu_3^n)_2]$ respectively; the main complex can be safely assumed to be $[NBu_4^n]$ [HgCl₃- (PBu_3^n)]. The behaviour of the ³¹P parameters on stepwise addition of [NBu₄ⁿ] Cl is illustrated in Fig. 1. The ³¹P resonances are sharp throughout and it is evident that whilst phosphine exchange is slow,

Fig. 1. Change in ³¹P n.m.r. parameter on addition of $[NBu_4^n]$ Cl. • = 'Hg(PBu_3^n)' species. \circ = 'Hg(PBu_3^n)₂' species.

halide exchange is fast on the n.m.r. time scale. The proportion of the minor species increases until $2[NBu_4^n]Cl$ have been added when it is *ca.* 1/6th judged from peak heights. ³¹P spectra show that the bromide and iodide systems behave similarly and that the proportion of the second component is only little more than for the chloride, in contrast to the behaviour of $[Hg_2X_4(PBu_3^n)_2]$.

Acknowledgments

We thank JEOL (U.K.) Ltd., Bruker Spectrospin G.m.b.H., Dr. M. Murray (University of Briston) and Dr. B. F. Taylor (University of Sheffield) for assistance with the ¹⁹⁹Hg measurements. Postgraduate scholarships from the University of Bristol (to K.K.) and the S.R.C. (to D.M.McE) are gratefully acknowledged.

References

- 1 S. O. Grim, P. J. Lui and R. L. Keiter, Inorg. Chem., 13, 342 (1974).
- 2 N. A. Bell, M. Goldstein, T. Jones and I. W. Nowell, Chem. Comm., 1039 (1976).
- 3 N. A. Bell, M. Goldstein, T. Jones and I. W. Nowell, Inorg. Chim. Acta, 28, L169 (1978).